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1. Introduction

The low-energy dynamics of D-branes is governed by the Dirac-Born-Infeld (DBI) action,

which generalizes the Dirac brane action to include worldvolume Born-Infeld (BI) electric

and magnetic fields. These fields allow many more stable configurations than would other-

wise be possible since they can support an otherwise unstable geometry against collapse. In

many cases the stability can be understood as being a consequence of partial preservation

of the supersymmetry of the string theory vacuum. Although many such ‘supersymmetric’

solutions of the DBI equations have been found, and their physical implications explored,

there has not yet been any systematic attempt to find all supersymmetric solutions, in
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contrast to the situation for branes without worldvolume fields for which the mathematics

of calibrations allows a complete classification for branes in vacuo [1, 2].

Here we initiate a program to classify all time-independent supersymmetric solutions

of the DBI equations for the simplest case of a super D2-brane in the 10-dimensional

Minkowski vacuum of IIA superstring theory (and all fractions of supersymmetry will refer

to fractions of the 32 supersymmetries preserved by this vacuum). All such solutions have

an M-theory interpretation as supersymmetric (although not necessarily time-independent)

M2-branes [3 – 6] so it might seem that this case is too simple to yield anything new. How-

ever, the identification of the ‘extra’ space coordinate needed for S1-compactification to

the IIA Minkowski vacuum introduces some subtleties even for the 1/2 supersymmet-

ric planar D2-branes. Although all such solutions descend from a planar M2-brane, the

1/2-supersymmetric D2-branes can be classified according to whether they are ‘vacuum’,

‘electric’, ‘magnetic’ or ‘dyonic’, and the ‘dyonic’ case is, (as far as we are aware) a new

solution of the DBI equations.

This classification is reminiscent of the classification of intersecting planar branes in

relative motion according to whether the intersection velocity is subluminal, superluminal

or equal to the velocity of light [7]. This similarity is not a coincidence. The identification

of the coordinate of the M-theory circle breaks the boost invariance in the ‘extra’ direction,

leading to a foliation of the 11-dimensional spacetime by a family of timelike hypersurfaces

that are at rest, in an absolute sense. One may now consider the motion of any object in

M-theory, such as an M2-brane, with respect to any one of these rest-frame hypersurfaces,

which we call ‘ether-9-branes’, or ‘E9-branes’, not only because they are ‘etherial’ (in the

sense of having no local physical properties) but also because, collectively, they play a role

analogous to that of the ether in pre-relativistic physics. Our classification of 1/2 super-

symmetric D2-branes corresponds to the classification of M2-E9 intersections according to

the same scheme as in [7], and the ‘null’ intersection yields the dyonic 1/2 supersymmetric

D2-brane.

The possibilities for time-independent supersymmetric D2-branes preserving less than

1/2 supersymmetry are, of course, much more numerous. Our analysis is exhaustive only for

D2-branes in a 3-dimensional subspace of the 9-dimensional Euclidean space, for which we

find that all supersymmetric D2-branes are either 1/2 or 1/4 supersymmetric. Some of the

1/4 supersymmetric solutions are already known. An example is the original supertube [8],

which is a tubular D2-brane supported by the angular momentum in the BI fields. Although

it is time-independent, it should be considered stationary rather than static because of

the non-zero angular momentum; this feature is explicit in its IIB superstring-theory dual

manifestation as a “superhelix” [9] and in its M-theory manifestation as an “M-ribbon” [10].

We find a new tubular solution that we call a ‘twisted’ supertube because the electric field

lines twist around the tube. A twisted supertube is actually just a supertube that has been

boosted along its axis

The original D2-brane supertube was assumed to have a planar and circular cross-

section, but it was soon realized that other cross-section shapes are possible [11 – 13]. In-

deed, it was shown in [14] that 1/4 supersymmetry allows an arbitrary cross-sectional curve

(which need not even be closed, although the description as a ‘tube’ becomes inappropriate
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if the curve is infinite). This surprising feature is readily understood from the TST-dual

manifestation of the supertube as a “supercurve” [15], which is a IIA string in the T-dual

direction carrying a wave with an arbitrary profile. Given this result, it is natural to

wonder whether there exist supersymmetric ‘tubular’ D2-branes for which the scale of the

cross-section varies along the length of the tube. This possibility was considered in [8],

where it was concluded that any such configuration would be equivalent to the circularly-

symmetric “dyonic BIon” of [16], which was recovered as a ‘tubular’ configuration with a

circular cross-section that varies exponentially along the tube; from this perspective the

term “superfunnel” seems more appropriate. However, the circularly-symmetric superfun-

nel is found by choosing a particular solution of the two-dimensional Laplace equation.

Here we exhibit solutions that yield superfunnels with an arbitrary (planar) cross-section.

Other solutions of the two-dimensional Laplace equation yield other 1/4 supersymmetric

“supershapes” including asymptotically-planar D2-branes.

We do not attempt a systematic study of D2-brane geometries in Euclidean spaces of

more than three dimensions, but we partially analyze the conditions for 1/4 supersymmetry.

One motivation for this partial analysis is that the generic cross section for a supertube in

the 9-dimensional space of the 10-dimensional Minkowski IIA vacuum is known to be an

arbitrary curve in the 8-dimensional space transverse to the supertube ‘axis’ [14] and we

would like to know how this result generalizes. Not surprisingly, we find the same result

for the twisted supertubes. In contrast, we find that the cross-section of a superfunnel is

necessarily planar. Finally, we present a new 1/4 supersymmetric solution for a D2-brane

in a 4-dimensional space that can be interpreted as a (non-singular) intersection of two,

asymptotically planar, ‘magnetic’ D2-branes.

We will begin with a summary of the DBI action for D2-branes, the supersymmetry

preservation condition, and the relation to M2-brane configurations, thereby collecting

together many of the basic formulas that we will need for the subsequent tour of the “D2

Susy Zoo”.

2. Preliminaries

We choose cartesian coordinates for the 10-dimensional Minkowski metric, such that

ds2
10 = −dT 2 +

9
∑

I=1

(dXI)2 . (2.1)

Let ξµ (µ = 0, 1, 2) be the D2-brane’s worldvolume coordinates. The induced worldvolume

metric is then

ds2
3 = gµν dξµdξν , (2.2)

where

gµν = −∂µT∂νT +
∑

I

∂µXI∂νX
I . (2.3)
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The low-energy dynamics for a D2-brane of unit surface tension is governed by the Dirac-

Born-Infeld (DBI) action

I = −
∫

d3ξ ∆ , ∆ ≡
√

− det(g + F ) (2.4)

where F is the BI 2-form field strength subject to the Bianchi identity dF = 0. Setting

ξµ = (t, σi) (i = 1, 2), we can write F as

F = Ei dt ∧ dσi + B dσ1 ∧ dσ2 , (2.5)

where Ei is the BI electric field, and B the BI magnetic field density. The Bianchi identity

is

∂tB = εij∂iEj . (2.6)

Similarly, we can now write the induced metric as

ds2 = g00 dt2 + 2g0i dtdξi + hij dσidσj (2.7)

so that hij = gij . This allows us to define hij as the inverse to hij (with gij being the space

components of the inverse to gµν). After some calculation, one finds that

∆2 = − det g − dethhijEiEj − g00 B2 − 2B εijEi g0j . (2.8)

2.1 Supersymmetry preservation

Let (ΓT ,ΓI) be the (constant) 32 × 32 spacetime Dirac matrices, which we may choose to

be real. These matrices act on real SO(1, 9) spinors ε that we may decompose as

ε = ε+ + ε− , Γ\ ε± = ±ε± (2.9)

where

Γ\ ≡ ΓT Γ1 · · ·Γ9 (2.10)

is the 10-dimensional (constant) chirality matrix. The spacetime Dirac matrices induce

reducible (32 × 32), and ξ-dependent, worldvolume Dirac matrices γµ satisfying

{γµ, γν} = 2gµν . (2.11)

We define γµ = gµνγν , and similarly for the antisymmetrized products of worldvolume

Dirac matrices; for example

γµν = gµρgνλγρλ ,
(

γµν ≡ γ[µγν]

)

. (2.12)

The number of supersymmetries preserved by a given D2-brane configuration is the dimen-

sion of the space of solutions for covariantly-constant spinors ε of the equation

Γε = ε (2.13)
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where Γ is the ‘kappa-symmetry’ matrix [6]

Γ =
1

∆

[

γ012 + εijEiγjΓ\ + Bγ0Γ\

]

. (2.14)

In the cartesian coordinates used here, covariant constancy implies constancy, so ε must

actually be a constant spinor. Note that Γ is traceless and satisfies the identity

Γ2 ≡ 1 . (2.15)

which implies preservation of 1/2 supersymmetry locally. However Γ is a function of po-

sition on the worldvolume, generically, so the fraction of supersymmetry preserved will

generally be less than 1/2. In fact, generically there will be no non-zero solutions to (2.13)

so D2-brane configurations preserving any non-zero fraction of supersymmetry must be

special. Finally, note that

{Γ,Γ\} = 0 , (2.16)

which implies that all supersymmetries are broken by a restriction to chiral 10-dimensional

spinors, as expected because there is no supersymmetric membrane solution of any minimal

10-dimensional supergravity theory.

2.2 Stationary D2-branes

Here we are interested in stationary (time-independent) supersymmetric D2-brane configu-

rations, so it is convenient to fix the time-reparametrization invariance by the partial gauge

choice

T = t . (2.17)

We now have a static worldvolume metric with g00 = −1 and g0i = 0:

ds2
3 = −dt2 + dσidσj hij , (2.18)

where

hij =

9
∑

I=1

∂iX
I∂jX

I , (2.19)

and hence

deth =
∑

I>J

(

∇XI × ∇XJ
) (

∇XI × ∇XJ
)

, (2.20)

where we use the standard 2D vector calculus notation. We now have

∆2 = (det h)
(

1 − hijEiEj

)

+ B2 , (2.21)

where, since Ei and B are now assumed to be t-independent, the Bianchi identity dF = 0

reduces, in 2D vector calculus notation, to

∇ × E = 0 . (2.22)

The induced worldvolume Dirac matrices are

γ0 = ΓT , γi = ∂iX
IΓI (2.23)
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so that γ012 = ΓT γ12, where

γ12 =
1

2

(

∇XI × ∇XJ
)

ΓIJ . (2.24)

The kappa-symmetry matrix Γ is

Γ =
1

∆

[

1

2
ΓT

(

∇XI × ∇XJ
)

ΓIJ + εijEi∂jX
IΓI\ + B ΓT\

]

. (2.25)

It is important to appreciate that a stationary supersymmetric D2-brane will satisfy

the DBI equations if and only if the Gauss law constraint,

∂iDi = 0 , (2.26)

is satisfied, where the electric ‘displacement’ field density is

Di ≡ − δ∆

δEi
= ∆−1 det hhijEj . (2.27)

This follows from consideration of the Hamiltonian formulation; we will not need this

formalism here but we record that the Hamiltonian density H for a stationary D2-brane in

the gauge T = t is given by

H2 = det h + B2 + hijDiDj
[

1 + B2/det h
]

. (2.28)

2.3 Lift to M-theory

The D2-brane has an M-theory interpretation as the 11-dimensional supermembrane, or

M2-brane [3, 4]. Let X\ be the 10th cartesian space coordinate, which becomes the angular

coordinate of the M-theory circle after periodic identification. The unit tension M2-brane

has the action1

IM2 = −
∫

d3ξ det
(

g(M2)
)

. (2.29)

The induced worldvolume metric is

g(M2)
µν = gµν + ∂µX\∂νX

\ (2.30)

where gµν is the induced metric of (2.3). Following the steps spelled out in detail in [6], one

finds that the derivatives of the M2 worldvolume field X\(ξ) are related to the BI fields of

the D2-brane as follows:

∂µX\ = (±)
1

2∆
gµνενλρFλρ , (2.31)

where (±) denotes an appropriate sign corresponding to the orientation of the D2 embed-

ding.

Let us now specialize to the case of a stationary brane. In the gauge T = t, one has

Ẋ\ = −(±)∆−1 B , ∂iX
\ = −(±)∆−1hijε

jkEk . (2.32)

1We omit the fermions, as they are irrelevant for the present purposes.
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Equivalently,

B = −(±)Ẋ\ ∆ , Ei = (±)hij εjk∂kX
\ (∆/det h) . (2.33)

Using these expressions in ∆ and solving the resulting equation for ∆, one finds that

∆ =

√
deth

√

1 −
(

Ẋ\
)2

+ hij∂iX\∂jX\

. (2.34)

Note that the quantity

−1

2
FµνFµν = hijEiEj −

(

B2/det h
)

=

[

hij∂iX
\∂jX

\ −
(

Ẋ\
)2

]

(

∆2/det h
)

(2.35)

is invariant with respect to the Sl(2; R) worldvolume Lorentz group.

3. One-half supersymmetry

Before considering configurations preserving less than 1/2 supersymmetry, we consider the

condition for 1/2 supersymmetry, which is

[

1

2
ΓT

(

∇XI × ∇XJ
)

ΓIJ + εijEi∂jX
IΓI\ + B ΓT\ − ∆

]

ε = 0 . (3.1)

As ε is constant, this condition will imply preservation of 1/2 supersymmetry only if all

terms are proportional to ∆. In particular we require

∇XI × ∇XJ = ΩIJ ∆ (3.2)

for some constant antisymmetric 9×9 matrix ΩIJ . Fixing the worldspace diffeomorphisms

by choosing X1 = σ1,X2 = σ2 we learn that ∆ is constant in this gauge, in which case

all space components XI must be linear in the worldspace coordinates σi in order that

∇XI × ∇XJ be constant for all (I, J). This implies that the brane geometry is a plane,

with the constants ∇XI × ∇XJ being proportional to the projections of an area element

of the brane onto the I − J plane. Clearly, we may orient the planar brane such that the

only non-zero entries of Ω are Ω12 = −Ω21 = 1/∆. We then have hij = δij , and hence

∆2 = 1 + B2 − |E|2 . (3.3)

3.1 Classification

Now that we know that ∆ is constant, the requirement that all coefficients in (3.1) be

proportional to ∆ implies that

E = nE , B = B , (3.4)

for fixed unit 2-vector n and constants E and B. The supersymmetry preservation condi-

tion now reduces to
[

ΓT Γ12 + εijE niΓj\ + BΓT\ − ∆
]

ε = 0 , (3.5)
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where

∆ =
√

1 − E2 + B2 . (3.6)

This condition can be satisfied for any constants (E,B) provided that E <
√

1 + B2, and

so all such planar D2-brane configurations preserve 1/2 supersymmetry.

The energy density is

H =
1 + B2

√
1 + B2 − E2

≥ 1 , (3.7)

with equality for the ‘vacuum’ D2-brane with E = B = 0, which is the only 1/2 super-

symmetric configuration that is invariant under the SO(1, 2) worldvolume Lorenz group.

All other 1/2 supersymmetric static D2-branes break the worldvolume Lorentz invariance,

and as E2 − B2 is a Lorentz invariant there are three cases to consider:

• E2−B2 < 0. In this case we may boost to a frame in which E = 0. In this frame the

non-zero magnetic density breaks SO(1, 2) to SO(2), the worldspace rotation group.

Because the boost invariance is broken, a boost generates a new 1/2 supersymmetric

D2-brane with electric as well as magnetic BI field.

• E2 − B2 > 0. In this case we may boost to a frame in which B = 0. The non-

zero electric field in this frame, which is constrained by |E| < 1, breaks SO(1, 2) to

SO(1, 1), which is the group of boosts in the direction of the electric field. A boost

in the orthogonal direction generates a new 1/2 supersymmetric D2-brane with a

magnetic field.

• E = B 6= 0. This case is intrinsically ‘dyonic’ in the sense that there is no frame for

which either the electric or the magnetic field is zero. We now have ∆ = 1 and

Γ = ΓT Γ12 + B (ΓT + Γ2) Γ\ . (3.8)

We may summarize this state of affairs by saying that a non-vacuum 1/2 supersym-

metric D2-brane is ‘magnetic’, ‘electric’, or ‘dyonic’ according to whether the 3-vector

(B,E1, E2) is, respectively, timelike, spacelike or null.

3.2 M-theory and E-branes

Each of the possible 1/2 supersymmetric D2-branes must lift to a planar M2-brane in the

E
(1,9) × S1 vacuum of M-theory, and it is instructive to see how the distinction between

magnetic, electric and dyonic D2-branes arises in this context. As in subsection 2.3, we let

X\ be the coordinate of the M-theory circle. We may assume that the plane of M2-brane

is spanned by a vector along the 1-axis, say, and another vector in the 2− \ plane. Taking

into account that (X1,X2) = (σ1, σ2), this implies that X\ is linear in σ2. Allowing, too,

for a linear time-dependence of X\, we have

Ẋ\ = u , ∂2X
\ = tan θ , (3.9)
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for constant u and constant angle θ, which is the angle that the M2-brane makes to the

X2-axis. From subsection 2.3, we read off the corresponding BI fields:

E = E1 =
sin θ√
1 − v2

, B = − v√
1 − v2

, (3.10)

where

v = u cos θ (3.11)

is the physical transverse velocity of the M2-brane. It follows that

E2 − B2 =
sin2 θ

(

1 − v2
int

)

1 − v2
, (3.12)

where we have defined

vint ≡ u/ tan θ = v/ sin θ . (3.13)

We see from this result that the D2-brane will be ‘electric’ or ‘magnetic’ according to

whether the velocity vint is subluminal or superluminal, and the dyonic D2-brane corre-

sponds to vint = 1. But what is the intrinsic significance of vint?

To answer this question, we begin by recalling a discussion of Bachas and Hull on

intersecting branes [7]. If the velocity of the intersection is vint then one must distinguish

between the three cases vint < 1, vint = 1 and vint > 1. For vint < 1 one can boost to

a frame in which the intersection is at rest, and in this frame one has static intersecting

branes. For vint > 1 one can boost to a frame in which the branes are parallel but in

relative motion. It seems as though a similar analysis should be applicable here but, if so,

where is the ‘other’ brane with respect to which the M2-brane is in motion?

To answer this question, we recall that the identification of the X\ coordinate breaks

the 11-dimensional Lorentz invariance; in particular it breaks the invariance under boosts

in the X\ direction, thereby introducing globally-defined rest-frames for motion in this

direction. Specifically, any hypersurface of constant X\ is at rest, and can be viewed as a

kind of ‘etherial’ 9-brane. Recalling that the hypothetical material defining the absolute

rest frame in pre-relativistic physics was called the ‘ether’, we propose to call this an ‘ether’

9-brane, or ‘E9-brane’. An E9-brane has no local physical properties, but is nevertheless a

convenient way of thinking about the globally-defined rest frames implied by the existence

of the M-theory circle. It is convenient because we can now apply a Bachas-Hull-type

argument to the M2-E9 intersection. The velocity of this intersection is precisely vint, so

we get a classification of D2-branes according to whether vint is less than, greater than or

equal to the velocity of light. As we have just shown, this classification coincides with the

‘intrinsic’ classification into electric, magnetic and dyonic D2-branes.

4. D2 in 3D

In the following section, we will present a systematic analysis that uncovers all possible

time-independent supersymmetric D2-branes for which the D2-brane geometry is a surface

in Euclidean 3-space with coordinates (X1,X2,X3). Many special cases can be found by

– 9 –
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non-systematic methods of course, and we are first going to present such an analysis, based

on the original approach in [8]. We do this partly because we wish to correct an error

in [8] which led to a puzzle that we resolve here, and also because it turns out that we do

actually find all the 1/4 supersymmetric solutions this way.

Following [8], we introduce the cylindrical polar coordinates (R,Φ,X):

X1 = R cos Φ , X2 = R sin Φ , X3 = Z . (4.1)

For convenience of comparison with [8], we also relabel the worldspace coordinates

σ1 = z , σ2 = ϕ , (4.2)

with ϕ an angular coordinate (such that ϕ ∼ ϕ + 2π). This allows us to fix the worldspace

parametrization invariance by the gauge choice

Z = z , Φ = ϕ . (4.3)

The induced worldspace line-element is

hijdσidσj =
(

1 + R2
z

)

dz2 + 2RzRϕdzdϕ +
(

R2 + R2
ϕ

)

dϕ2 , (4.4)

where Rz = ∂zR and Rϕ = ∂ϕR. In this approach, the cross-section of the tube is assumed

to be planar from the outset, but since R is, a priori, a function of both z and ϕ, allowance

is made for a possible change of scale along the axis of the tube (which leads to what

we will here call ‘superfunnels’) and an arbitrary planar shape (although only the circular

supertube was actually found in [8]). We write the BI 2-form as

F = Ez dt ∧ dz + Eϕ dt ∧ dϕ + B dz ∧ dϕ . (4.5)

Note the allowance of an electric field component Eϕ around the tube as well as the

component Ez along it. In this respect we have a generalization of the analysis of [8].

A calculation now yields

∆2 =
(

R2 + R2
ϕ

) (

1 − E2
z

)

+ B2 + R2R2
z − E2

ϕ

(

1 + R2
z

)

+ 2RzRϕEzEϕ , (4.6)

from which we compute that

Dz = ∆−1
[(

R2 + R2
ϕ

)

Ez − RzRϕEϕ

]

,

Dϕ = ∆−1
[(

1 + R2
z

)

Eϕ − RzRϕEx

]

. (4.7)

The Hamiltonian density is

H = Ξ−1
√

[Ξ2 + |D|2] [Ξ2 + B2] (4.8)

where

Ξ2 ≡ R2
(

1 + R2
z

)

+ R2
ϕ ,

|D|2 =
(

1 + R2
z

)

D2
z + 2RzRϕDzDϕ +

(

R2 + R2
ϕ

)

D2
ϕ . (4.9)

– 10 –



J
H
E
P
0
3
(
2
0
0
7
)
0
1
3

The induced worldvolume Dirac matrices are

γ0 = ΓT , γz = ΓZ + RzΓR , γϕ = RΓΦ + RϕΓR (4.10)

where ΓΦ is the Dirac matrix in the obvious orthonormal frame; it is constant and squares

to the identity matrix. Following [8], we note that a covariantly constant spinor in the new

cylindrical polar coordinates is not constant but instead takes the form

ε = exp

(

1

2
ΦΓRΦ

)

ε0 . (4.11)

Following the steps sketched in [8], and taking into account that Φ = ϕ, we now find that

the supersymmetry preservation condition can be put into the form

0=
[

RRzΓTRΦ+BΓT\−EϕΓZ\−∆
]

ε0+exp
(

−ϕΓRΦ

)[

γϕΓ\

(

ΓTZ\+Ez

)

−EϕRzΓR\

]

ε0 . (4.12)

For Eϕ = 0, this should reduce to the condition found in [8] but it does not quite do so. The

first set of bracketed terms in eq. (20) of [8] erroneously includes an additional RzRϕΓT

term that led the authors to conclude that 1/4 supersymmetry requires either Rz = 0 or

Rϕ = 0. Since only such configurations were then considered, this error had no further

consequences in [8] but we must now re-analyse the possibilities, which we do taking into

account the additional possibility of non-zero Eϕ.

If one assumes that the worldvolume fields are ϕ-independent, then, as argued in [8],

the two square-bracketed terms on the right hand side of (4.12) must vanish independently.

This requirement is not obviously necessary when the worldvolume fields are allowed to

depend on ϕ but, as will be seen in the following section, relaxation of it does not yield

any new solutions. We therefore proceed by assuming that each of the two bracketed terms

is zero. Observing that the gamma-matrices in the first two terms of the second bracket

square to the identity whereas the gamma-matrix in the last term squares to minus the

identity, we deduce that the terms of the second bracket vanish if and only if

Ez = ±1 , EϕRz = 0 , (4.13)

and

ΓTZ\ ε = ∓ε . (4.14)

The supersymmetry preservation condition then becomes

[

RRz ΓTRΦ + B ΓT\ − Eϕ ΓZ\ − ∆
]

ε0 = 0 (4.15)

where, now,

∆2 = B2 + (RRz)
2 − E2

ϕ . (4.16)

We see from (4.13) that there are two alternatives: either (i) Rz = 0 or (ii) Eϕ = 0.

We will consider them in turn.
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4.1 Supertubes

For the choice

Rz = 0 , (4.17)

the supersymmetry preservation condition becomes

(BΓT\ + EϕΓZ\) ε =
√

B2 − E2
ϕ ε . (4.18)

Since both ΓT\ and ΓZ\ commute with ΓTZ\, this condition is compatible with (4.14), but

the two together imply preservation of 1/4 supersymmetry only if

Eϕ = βB , β2 < 1 (4.19)

for some constant β. The Gauss law reduces to ∂zB = 0 in this case, consistent with

invariance under translations along the Z-axis. The standard supertube, with an arbitrary

planar cross-section, is found by setting Eϕ = 0. Details of the Eϕ 6= 0 case will be left

until our later discussion allowing for a non-planar cross-section.

We now have a 1/4 supersymmetric tubular configuration determined by the arbitrary

functions R(ϕ) and B(ϕ). To facilitate comparison with the more general solutions that we

present in section 7, we recall here that we fixed the worldspace diffeomorphism by setting

Z = z and Φ = ϕ, so that the functions X1(ϕ) and X2(ϕ) are not independent because

they are both determined by the function R(ϕ). However, we could now suppose that ϕ is

a function of some new angular variable ψ, in which case

B dz ∧ dϕ = B dz ∧ dψ (4.20)

where B = B(∂ϕ/∂ψ) is a constant. In this reparametrization of the solution, it is now the

two functions X1(ψ) and X2(ψ) that are independent, and they determine an arbitrary

curve in the X1-X2 plane.

4.2 Superfunnels

We now suppose that Rz 6= 0, in which case we must set

Eϕ = 0 . (4.21)

The supersymmetry preservation condition is now

(

RRzΓTRΦ + BΓT\

)

ε =
√

B2 + R2R2
z ε . (4.22)

Since both ΓTRΦ and ΓT\ commute with ΓTZ\, this condition is compatible with (4.14),

but the two together imply preservation of 1/4 supersymmetry only if

B = B0RRz (4.23)

for some constant B0. The Gauss law constraint in this case is

∂z

[

R

Rz
+

R2
ϕ

RRz

]

= ∂2
ϕ log R . (4.24)
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To see the significance of this constraint, we switch independent variables from (z, ϕ) to

(ρ ≡ R,ϕ), taking z, which equals Z, as the dependent variable, and use the relations

(∂z)ϕ =
1

(Zρ)ϕ
(∂ρ)ϕ , (∂ϕ)z = (∂ϕ)ρ −

(Zϕ)ρ
(Zρ)ϕ

(∂ρ)ϕ . (4.25)

We find that

Rz = 1/Zρ , Rϕ = −Zϕ/Zρ , (4.26)

where it should be clear which variables are being kept fixed from the convention that

lower/upper case variables are independent/dependent. One then finds that (4.24) is equiv-

alent to

∇2Z = 0 . (4.27)

In other words Z is a solution of the 2D Laplace equation. Note too that

F = ± dt ∧ dz + Bdz ∧ dϕ = ±(∂XiZ) dt ∧ dXi + B0dX1 ∧ X2 . (4.28)

The general periodic solution of the Laplace equation is

Z = Z0 + Q log ρ +
∑

k∈Z

′
[(ck cos(kϕ) + c̃k sin(kϕ))] ρk (4.29)

for constants Z0, Q and (ck, c̃k), where the prime on the sum indicates that the k = 0 term

is omitted. It was noted in [8] that the particular solution Z = Z0 + Q log ρ is equivalent

to the dyonic BIon of [16]. More generally,

∮

dϕZ ∝ log ρ . (4.30)

for any solution of the Laplace equation with non-zero Q. This is the expected logarithmic

bending of a D2-brane due to a charge Q, which can be interpreted as the charged endpoint

of an infinite IIA string. Equivalently, we have a IIA string that has been ‘blown-up’

to a funnel-shaped D2-brane, with a planar cross-section of arbitrary shape that grows

exponentially along the axis of the funnel, at least ‘on average’. Since they preserve 1/4

supersymmetry we call them ‘superfunnels’.

4.3 Other supershapes

When Q = 0, we have a new type of 1/4 supersymmetric D2-brane that is neither a

supertube nor a superfunnel, arising from the multipole expansion of Z. A simple example,

which might be called a “super-dipole” is

Z = cos ϕ/ρ . (4.31)

This has the feature that Z → 0 as ρ → ∞, so the brane geometry is asymptotically planar.

We depict the shape of the surface in figure 1. One finds that B = B0RRz = −B0ρ
3/ cos ϕ

for this configuration, which appears to blow up for ϕ = π/2 and as ρ → ∞, but this is
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Figure 1: The simple example (4.31) that is asymptotically planar.

an artifact of the choice of coordinates. As we showed above, B is proportional to the area

element and hence constant in local cartesian coordinates.

The projections on the spinor ε required by the 1/4 supersymmetry of all these Q = 0

solutions are exactly the same as for the superfunnel solutions, which suggests an interpre-

tation as a IIA string that passes through a planar D2-brane. If the point of intersection

of such a string is split, one has two string ends of opposite charge. Such a zero charge dis-

tribution would have multipole moments of all orders, so the pure dipole solution of (4.31)

must correspond to a much smoother charge distribution of zero net charge, which is pos-

sibly why it does not have the appearance of a string intersecting a D2-brane.

Let us consider the M-theory lift of the “super-multipole” solutions. Taking into

account a sign associated to the orientation of D2 embedding, one has

(±)∆ =
√

1 + B2
0 RRz =

√

1 + B2
0

cos2 ϕ

z3
. (4.32)

From (2.32) we see that the velocity in the \ direction is

Ẋ\ =
B0

√

1 + B2
0

. (4.33)

In fact, this result also holds for any of the superfunnel configurations, and it implies that

both superfunnels and super-multipoles are moving uniformly with constant velocity along

the M-theory circle.

Since Eϕ = 0, the second equation of (2.32) becomes, for the configuration defined

by (4.31),

∂zX
\ =

tan ϕ
√

1 + B2
0

, ∂ϕX\ =
z

√

1 + B2
0 cos2 ϕ

. (4.34)

These equations can be integrated straightforwardly:

X\ =
1

√

1 + B2
0

(

B0t + z tan ϕ
)

, (4.35)

from which one may notice that X\ is also a harmonic function satisfying ∇2X\ = 0 in

the ρ and ϕ space. This is actually a general result that is true of all superfunnels and

super-multipole configurations.
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5. Systematics

We now present a systematic analysis of 1/4 supersymmetric D2-branes in three Euclidean

space dimensions. For this purpose it is convenient to revert to the cartesian space co-

ordinates Xa; a = 1, 2, 3, and worldvolume coordinates (t, σ1, σ2) and fix only the time

reparametrizations by the usual gauge choice T = t. We assume that the worldvolume

fields (Xa,E,B) are t-independent.

Because of the restriction to a 3-dimensional space, we have

∆2 =
∑

a

(GaGa − HaHa) + B2. (5.1)

where

Ga =
1

2
εabc∇Xb × ∇Xc , Ha = E × ∇Xa . (5.2)

In this notation, the supersymmetry preservation condition becomes
[

HaΓa\ +
1

2
εabcGaΓT Γbc + B ΓT\ − ∆

]

ε = 0 . (5.3)

Because the spacetime is effectively assumed to be 4-dimensional, the results we obtain

must be the same as if we had started from the super-D2-brane in this spacetime dimension.

Consequently, we may interpret ε as a complex 4-component Dirac spinor2 and the matrices

(ΓT ,Γa; a = 1, 2, 3) as standard four-dimensional 4 × 4 Dirac matrices and −iΓ\ as their

product. A convenient representation is

ΓT =

(

0 1

−1 0

)

, Γa =

(

0 σa

σa 0

)

, (5.4)

in which case

Γ\ = iΓT Γ123 =

(

−1 0

0 1

)

, (5.5)

where 1 is a 2 × 2 unit matrix. The supersymmetry preservation condition is now
(

−∆ a0 +
∑

a aaσa

a0 −
∑

a aaσa −∆

) (

ε+
ε−

)

= 0 , (5.6)

where ε± are two-component SU(2)-spinors spanning the ∓ eigenspaces of Γ\, and

a0 = B , aa = Ha + iGa . (5.7)

Note the manifest SU(2) invariance of the equation (5.6), and its invariance under a common U(1)

phase rotation of ε±. This equation is equivalent to

(

ε3
ε4

)

=
1

∆

(

a0 − a3 −a1 + ia2

−a1 − ia2 a0 + a3

) (

ε1
ε2

)

. (5.8)

2Supersymmetry requires the spinor parameter ε to be a Dirac spinor. One way to see this is to

observe that the four-dimensional super-D2-brane action is equivalent to the action of the 5-dimensional

supermembrane in exactly the same way as the string theory super-D2-brane action is equivalent to the

action of the 11-dimensional supermembrane.
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where (ε1, ε2) are the components of ε+ and (ε3, ε4) are the components of ε−. Observe that
∑

a HaGa = 0, and hence that

∆2 = a2
0 −

∑

a

aaaa . (5.9)

Given that (ε1, ε2) are arbitrary complex constants, we can show that (ε3, ε4) are also constants

if and only if (a0, a1, a2, a3), and hence ∆, are constants. This is the case of 1/2 supersymmetry. Our

results of section 3 are recovered by fixing the worldspace diffeomorphism invariance appropriately.

Preservation of any fraction of supersymmetry less than 1/2 is possible only if ε1,ε2 and their

complex conjugates are subject to linear relations. We may use symmetries of (5.8) to bring

any such relations into a ‘standard’ form using the SU(2) rotational invariance and U(1) phase

invariance. Given a single real linear relation between (ε1, ε2) and their complex conjugates, we

may use the phase invariance to arrange for ε2 to be real. This leads to configurations that preserve

at least 3/8 supersymmetry. However, the conditions for ε3 and ε4 to be constant remain the same

as they were before so all configurations preserving at least 3/8 supersymmetry actually preserve

1/2 supersymmetry.

We learn from this that to find configurations preserving less than 1/2 supersymmetry we

need to impose at least two real linear relations on ε1, ε2 and their complex conjugates. Given

two real relations we will find configurations preserving at least 1/4 supersymmetry (we say “at

least” because the 1/2 supersymmetric configurations will be included). Given three real relations

we will find configurations preserving at least 1/8 supersymmetry. Any two real linear relations

are equivalent to one complex linear relation on ε1, ε2. We may now use the SU(2) symmetry to

arrange for this relation to be ε2 = 0. In this case, (5.8) implies

ε3 = ∆−1 (a0 − a3) ε1 , ε4 = −∆−1 (a1 + ia2) ε1 , (5.10)

In the case that there is one more linear relation, which will now be a relation between the real and

imaginary parts of ε1 we can use the U(1) invariance to arrange for this relation to be Imε1 = 0, so

that ε1 is real. In this case (5.8) again implies (5.10) but with ε1 now restricted to be real. However,

irrespective of whether ε1 is real or complex, constancy of (ε3, ε4) requires both (a1 + ia2)/∆ and

(a0−a3)/∆ to be constant. It follows that all configurations preserving at least 1/8 supersymmetry

actually preserve at least 1/4 supersymmetry, and that the conditions for this are

B − E× ∇X3 + i∇X1 × ∇X2 ∝ ∆ ,
(

E − ∇X3
)

×
(

∇X1 + i∇X2
)

∝ ∆ . (5.11)

From the imaginary part of the first of these equations we see that

∇X1 × ∇X2 = A∆ , (5.12)

for some constant A, which determines the projection of an area element of the D2-brane onto the

X1-X2 plane. We must now consider separately the A = 0 and A 6= 0 cases.

5.1 A = 0

When A = 0, it is convenient to revert to the cylindrical 3-space coordinates of (4.1) and the

worldspace coordinate notation of (4.2). We may then fix the worldspace diffeomorphism invariance

by the gauge choice Z = z and Φ = ϕ. Equivalently,

X1 = R(z, ϕ) cosϕ , X2 = R(z, ϕ) sin ϕ , X3 = z (5.13)

We now have

0 = ∇X1 × ∇X2 = RRz . (5.14)
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In other words, the vanishing of A implies that Rz = 0 (since R = 0 would imply a collapsed

D2-brane of zero area). This leads to

a0 = B , a1 = Ez (Rϕ cosϕ − R sin ϕ) − i (Rϕ sin ϕ + R cosϕ) ,

a2 = Ez (Rϕ sin ϕ + R cosϕ) + i (Rϕ cosϕ − R sinϕ) , a3 = −Eϕ , (5.15)

and hence to

∆2 = (B + Eϕ) (B − Eϕ) +
(

1 − E2
z

) (

R2 + R2
ϕ

)

. (5.16)

Recalling that the conditions for preservation of 1/4 supersymmetry are those in (5.11), we

now find that they become

B + Eϕ = c∆ , (Ez − 1) eiϕ (Rϕ + iR) = w∆ , (5.17)

for real constant c and complex constant w. In addition, we must take into account the Bianchi

identity

∂ϕEz = ∂zEϕ (5.18)

and the Gauss law constraint

(

R2 + R2
ϕ

)

∂z (Ez/∆) + ∂ϕ (Eϕ/∆) = 0 . (5.19)

Let us first consider the cases for which w in (5.17) is non-zero. In this case the ratio of the

real and imaginary parts of the second of the supersymmetry conditions (5.17) yields a differential

equation for R that has the solution

Im
(

w̄eiϕ
)

R = R0 (5.20)

for some constant R0. This is a line in the X1-X2 plane parametrized by ϕ, so the D2-brane geom-

etry is planar. Further analysis shows that the BI fields are constant in local cartesian coordinates,

so w 6= 0 leads back to the 1/2 supersymmetric planar D2-branes already discussed.

The interesting case is therefore w = 0, in which case supersymmetry requires Ez = 1, and

hence

∆2 = (B − Eϕ) (B + Eϕ) = c (B − Eϕ)∆ . (5.21)

This means that B and Eϕ are both proportional to ∆ and hence to each other. As B cannot vanish

(for positivity of ∆2), we may write

Eϕ = β B , β =
c2 − 1

c2 + 1
, (5.22)

and hence

∆ =
√

1 − β2 B . (5.23)

The remaining condition for supersymmetry (B + Eϕ = c∆) is now an identity. Since Eϕ ∝ ∆, the

Gauss law states that ∆ is a function only of ϕ, which means that both Eϕ and B are also functions

only of ϕ, since they are proportional and their sum is proportional to ∆.

We have now found 1/4 supersymmetric D2-branes that are z-independent and hence invariant

under translations along the Z-axis. In fact, we have recovered the supertubes (β = 0) and twisted

supertubes (β 6= 0) of section 4.1. In that case we found that Ez = ±1 but the Ez = −1 case is

obtained from the Ez = 1 case by a rotation, and in this section we effectively used the rotational

invariance to arrange for Ez = 1 rather than Ez = −1.
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5.2 A 6= 0

When A 6= 0, we may choose

X1 = σ1 , X2 = σ2 X3 = Z(σ1, σ2) (5.24)

In this gauge, ∆ = 1/|A|, and (5.11) is equivalent to

E = ∇Z + k , B = B0 + k × ∇Z , (5.25)

for constant B0 and constant 2-vector k. The worldspace metric is

hij = δij + ∂iZ∂jZ , (5.26)

from which one deduces, according to (2.26) and (2.27), the Gauss law

∇2Z = ∇Z × ∇ (k × ∇Z) , (5.27)

so that Z is harmonic when k = 0. To make contact with section 4 we define new coordinates (z, ϕ)

by

σ1 = R cosϕ , σ2 = R sin ϕ , (5.28)

where the function R(z, ϕ) is determined implicitly by the requirement that

Z(σ1, σ2) = z . (5.29)

The Laplace equation for Z is now equivalent to the differential equation (4.24) for R, and the BI

field-strength 2-form is

F = dz ∧ dt + B0RRzdz ∧ dϕ . (5.30)

We have therefore recovered the superfunnels, and other ‘supershapes’ of section 4.

It remains to analyse the case of non-zero k or, equivalently, non-zero k ≡ |k|. If the expres-

sions (5.25) are used to compute ∆ as given in (5.9) in terms of ∇Z, then one finds that ∆ is a

constant, as required, if and only if

B0 k × ∇Z − k · ∇Z = ` (5.31)

for some constant `, which is not independent of those already introduced since

∆2 = B2
0 −

(

1 + k2
)

+ 2` . (5.32)

The solution of this equation is

Z = W (z+) +
`

k
√

1 + B2
0

z− , (5.33)

where

z+ =
1

k
√

1 + B2
0

[

(B0k1 − k2)σ1 + (B0k2 + k1)σ2
]

,

z− =
1

k
√

1 + B2
0

[

− (B0k2 + k1) σ1 + (B0k1 − k2)σ2
]

. (5.34)

The Gauss law constraint (5.27) now yields

(

1 + B2
0 + `

)

W ′′ = 0 . (5.35)
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The term in parentheses cannot vanish for real ∆, so we conclude that W ′′ = 0, and hence that W

is a linear function of z+. Thus,

Z = Z0 + Cz+ +
`

k
√

1 + B2
0

z− , (5.36)

where Z0 and C are constants. The geometry is therefore planar. Moreover, the BI fields are

constant, so that these configurations with k 6= 0 are actually just the 1/2 supersymmetric planar

D2-branes that we already know about.

6. D2 in 4D

There is a further class of 1/4 supersymmetric configuration of D2-branes that is suggested by

the well-known 1/4 supersymmetric Kähler calibrated M2-branes. The latter is a configuration

that has two asymptotic planes and may therefore be interpreted as an intersection of two M2-

branes, although the intersection is non-singular so the configuration can be found as a solution of

the worldvolume equations of motion for a single supermembrane. It is obvious that dimensional

reduction of such a configuration could lead (depending on its orientation) to a similar D2-brane

configuration. The geometry is intrinsically 4-dimensional, which explains why we did not see

it in our previous exhaustive analysis of D2-branes in 3D. As we now show, a novelty of the

D2-brane version of this ‘intersecting brane’ configuration is the possibility, consistent with 1/4

supersymmetry, of a superposed uniform BI magnetic field.

As we expect the geometry to be 4-dimensional, we set X5 = X6 = X7 = X8 = X9 = 0. We

fix the worldspace parametrization invariance by setting

X3 = σ1, X4 = σ2 , (6.1)

leaving (X1, X2) as the surviving worldvolume scalar fields. We now find that

deth = 1 +
∣

∣∇X1
∣

∣

2
+

∣

∣∇X2
∣

∣

2
+

(

∇X1 × ∇X2
)2

. (6.2)

We will set the BI electric field to zero, so the Gauss law is satisfied trivially, and

∆2 = deth + B2 . (6.3)

The kappa-symmetry matrix of (2.25) is now

Γ = ∆−1
[

ΓT12 + ΓT13∂2X
1 − ΓT24∂1X

2 − ΓT23∂1X
1 + ΓT14∂2X

2 + ΓT34

(

∇X1 × ∇X2
)

+ ΓT\B
]

.

(6.4)

Imposing the conditions

Γ1234ε = ε , (6.5)

and the Cauchy-Riemann (CR) equations

∂1X
1 = −∂2X

2 , ∂1X
2 = ∂2X

1 , (6.6)

one finds that √
deth = 1 +

1

2

∣

∣∇X1
∣

∣

2
+

1

2

∣

∣∇X2
∣

∣

2
, (6.7)

and the supersymmetry condition Γε = ε reduces to

[√
dethΓT12 + B ΓT\

]

ε = ∆ ε . (6.8)

– 19 –



J
H
E
P
0
3
(
2
0
0
7
)
0
1
3

Provided that the magnetic field B is uniform, which means that

B = B
√

det h , (6.9)

for some constant B, the two constraints (6.5) and (6.8) are compatible and imply preservation of

1/4 supersymmetry. The CR equations imply that the complex field Z = X1+iX2 is a holomorphic

function of the complex worldspace coordinate ζ = σ1 − iσ2. Equivalently, one has f(Z, ζ) = 0

for holomorphic function f of the two complex variables (Z, ζ); this implies that the D2-brane is

Kähler calibrated. The novelty here is the additional uniform magnetic field density.

7. General cross-sections

We know from [14] that the most general cross section of a supertube is a an arbitrary curve in the

8-dimensional space transverse to the axis of the tube. An obvious question is whether this result

generalizes to twisted supertubes and superfunnels. We now aim to answer this question, using the

cartesian coordinate approach of [14]. We first set

XI = (Z, Y A) (A = 1, . . . , 8) , (7.1)

where the Z-axis will be the axis of the supertube or superfunnel. Then we observe that

∆2 =
[

(∇Z + E) × ∇~Y
]

·
[

(∇Z − E) × ∇~Y
]

− (E× ∇Z)2

+
∑

A>B

(

∇Y A × ∇Y B
) (

∇Y A × ∇Y B
)

+ B2 , (7.2)

where ∇Y A are the components of the 8-vector ∇~Y and the dot product is the standard Euclidean

inner product on E
8. In the same notation we have

Γ = ∆−1

[

(

∇Z × ∇Y A
)

ΓTZA +
1

2

(

∇Y A × ∇Y B
)

ΓTAB

+ (E× ∇Z) ΓZ\ +
(

E × ∇Y A
)

ΓA\ + BΓT\

]

. (7.3)

For either superfunnels or supertubes, twisted or otherwise, we impose the constraint

ΓTZ\ε = ∓ε , (7.4)

which allows us to rewrite (7.3) as

Γ = ∆−1

[

(E∓ ∇Z) × ∇Y A ΓA\ + (E× ∇Z) ΓZ\ +
1

2

(

∇Y A × ∇Y B
)

ΓTAB + BΓT\

]

. (7.5)

To proceed, we solve the Bianchi identity (2.22) by setting

E = ∇V (7.6)

for some electric potential function V (x, ϕ). As this function depends on Eϕ, we consider first the

cases in which Eϕ = 0, which are the superfunnels and untwisted supertubes.
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7.1 Superfunnels

Let us choose

V = ±Z (7.7)

In this case the supersymmetry preservation condition becomes

[

1

2

(

∇Y A × ∇Y B
)

ΓT ΓAB + BΓT\ − ∆

]

ε = 0 , (7.8)

where now

∆2 =
∑

A>B

(

∇Y A × ∇Y B
) (

∇Y A × ∇Y B
)

+ B2 . (7.9)

If there are to be no further constraints on ε, we must have

∇Y A × ∇Y B = ∆ΩAB (7.10)

for some constant antisymmetric 8 × 8 matrix Ω. One possibility is Ω = 0, which arises when

∂x
~Y = 0. This leads to the standard (untwisted) supertube with arbitrary cross-section. We skip

the details since the untwisted supertube may be considered as a special (zero-twist) case of the

twisted supertube, to be discussed in the following subsection. However, for purposes of comparison

with the superfunnel, we observe that when ∂x
~Y = 0 the equation (7.10) places no restriction on

∂ϕ
~Y , and this is what allows the supertube cross-section to be an arbitrary curve in the transverse

8-space. As we shall now see, the situation is quite different when Ω is non-zero.

Given that Ω is non-zero, (7.10) implies (i) that ∆ is a constant in the gauge

Y 1 = σ1 , Y 2 = σ2 , (7.11)

and (ii) that the projection of the D2-brane geometry on the 8-dimensional Euclidean space with

coordinates Y is a plane, which we may orient such that the only non-zero entries of Ω are Ω12 =

−Ω21 = 1/∆. We then have ∆2 = 1 + B2 but since ∆ is a constant, we have B = B for some

constant B. The supersymmetry preservation condition (7.8) now becomes

ΓT [Γ12 + BΓ\] ε = ∆ε , ∆ =
√

1 + B2 . (7.12)

By itself, this condition would imply preservation of 1/2 supersymmetry, as would (7.4). These two

constraints on ε are compatible because ΓTZ\ commutes with both ΓT Γ12 and ΓT\, and the two

together imply preservation of 1/4 supersymmetry.

To summarize, we have now shown that any configuration with constant B, and electric field

E = ±∇Z, preserves 1/4 supersymmetry. However, we have still to impose the Gauss law con-

straint. Since Di = ±∆−1∂iZ and ∆ is constant, the Gauss law is

∇2Z = 0 . (7.13)

We have now recovered our earlier result for superfunnels, but now we have seen that the superfunnel

cross section is necessarily planar.

7.2 Twisted supertubes

For convenience of comparison with our analysis of section 4, we make the notational change

(σ1, σ2) = (z, ϕ). Returning to (7.5) we now partially fix the worldspace diffeomorphisms by the

gauge choice

Z = z , (7.14)
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and we further assume that all other worldvolume fields are z-independent. We then have a D2-

brane configuration that is invariant under translations along the Z-axis. Also, (7.5) simplifies to

Γ = ∆−1

[

∂ϕY AΓATZ + Ez∂ϕY AΓA\ − EϕΓZ\ + BΓT\

]

, (7.15)

where

∆2 =
(

1 − E2
z

)

|∂ϕ
~Y |2 − E2

ϕ + B2 . (7.16)

The twisted supertubes are now found by setting

Ez = ±1 , ΓTZ\ε = ∓ε . (7.17)

The Gauss law is now an identity, as is the Bianchi identity, and the supersymmetry preservation

condition is

(BΓT\ − EϕΓZ\) ε = ∆ε, ∆2 = B2 − E2
ϕ . (7.18)

For this to be satisfied without further constraint on ε, we require that

Eϕ = βB , β2 < 1 , (7.19)

for some constant β, as we found in (4.19). Given the above electric field components, we see that

the electric potential is

V (z, ϕ) = ±z + β

∫ ϕ

dϕ′B(ϕ′) . (7.20)

As expected, this coincides with the choice V = ±Z of the previous subsection when β = 0 (since

we are now working in the gauge Z = z). The supersymmetry preservation condition is now

1
√

1 − β2
(ΓT − βΓZ) Γ\ ε = ε . (7.21)

As both ΓT\ and ΓZ\ commute with ΓTZ\, this constraint is compatible with (7.4) and the two

together imply preservation of 1/4 supersymmetry.

The above result can be summarized as follows. The static D2-brane configuration with

Z = z , ~Y = ~Y (ϕ) , (7.22)

and

F = ±dt ∧ dz + qB(ϕ) dt ∧ dϕ + B(ϕ) dz ∧ dϕ , (7.23)

preserves 1/4 supersymmetry for arbitrary functions ~Y (ϕ), and arbitrary positive function B(ϕ).

Although it is not necessary, we may suppose that ϕ is periodically identified, such that ϕ ∼ ϕ+2π

without loss of generality, and in this case we have a tubular configuration, translationally invariant

along the Z-axis, and with a cross-section determined by an arbitrary closed curve in the transverse

8-dimensional space. For β = 0 this is the general D2-brane supertube of [14], for which the electric

field lines are parallel to the Z-axis. Note that although the function B(ϕ) is arbitrary, we have still

to fix the ϕ-reparametrization invariance. As B > 0, this can be done by setting B = B for some

positive constant B. Since B =
∮

dϕB(ϕ), which is reparametrization invariant, different choices of

B represent distinct configurations.

When β 6= 0, we have a new class of 1/4 supersymmetric D2-branes for which the electric field

lines are at a non-zero angle to the Z-axis and therefore twist around it. These could be called

“twisted supertubes” but they are actually just standard supertubes boosted in the Z direction.

Note that ∆ = B
√

1 − β2 is boost invariant, so a boost from rest increases B and hence the energy

density. In fact, the energy density is

H =
|∂ϕ

~Y |2 + B2

B
√

1 − β2
=

1
√

1 − β2

[

|D|β=0
+ B

]

, (7.24)

as expected for a boost of the supertube with velocity β.
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8. Discussion

The work reported here began with the aim of clarifying some aspects of the supersymmetry preser-

vation condition for solutions of the Dirac-Born-Infeld equations for a D2-brane in a 3-dimensional

Euclidean space. We have presented an exhaustive analysis of the conditions for supersymme-

try preservation under this restriction and one result of this analysis is that all supersymmetric

D2-branes of this type preserve either 1/2 or 1/4 supersymmetry.

The general 1/2 supersymmetric solution includes the obvious planar D2-brane vacuum but

also includes other planar solutions with constant Born-Infeld fields. All these planar D2-branes lift

to a planar M2-brane in M-theory, but the identification of the M-theory circle coordinate implies

a finer classification of 1/2 supersymmetric D2-branes than one has for planar M2-branes in the

11-dimensional Minkowski vacuum. This classification arises by considering the velocity of the

intersection of the M2-brane with what we have called an ‘ether’-brane, and a ‘null intersection’

leads to a ‘dyonic’ D2-brane.

In the case of 1/4 supersymmetry, we found a new class of ‘twisted’ supertubes, with electric

field lines that twist around the tube. These can be understood as supertubes boosted along the

direction of translational invariance. The boost invariance in this direction is broken by the magnetic

field density, which is why a boost generates a new solution. We also found ‘superfunnels’, which are

tubular configurations with arbitrary planar cross section, with a scale that varies (exponentially,

on average) along the tube. Various other 1/4 supersymmetric ‘supershapes’ were found to be

possible, including asymptotically planar D2-branes.

We have also analysed the conditions for 1/2 and 1/4 supersymmetry without the restriction to

an embedding in 3-dimensional space. In four space dimensions there are Kähler-calibrated minimal

surfaces that are 1/4 supersymmetric solutions of the DBI equations with vanishing BI fields, and

we found a generalization of this that allows for a uniform magnetic field. Our analysis was not

exhaustive so there may be other types of 1/4 supersymmetric time-independent solutions for which

the embedding space has more than three dimensions, but we suspect that nothing essentially new

is possible.

What is known is that supertubes may have a cross-section that is an arbitrary curve in the

8-dimensional space transverse to the tube, and we have shown that the same applies to twisted

supertubes. In contrast, the cross-section of a superfunnel was found to be necessarily planar.

This difference might seem surprising but the translational invariance of supertubes makes possible

string-theory dual configurations in which the arbitrary cross-section becomes an arbitrary wave

profile, and this ‘explanation’ is not available to superfunnels.

It would be interesting to extend the considerations of this paper to lower fractions of super-

symmetry, and also to extend the analysis to Dp-branes with p > 2. For example, for D5-branes

one expects the BPS conditions classified in [17] for gauge fields in a flat six-dimensional spacetime

to be relevant. We leave this to future investigations.
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